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ON THE EFFECT OF THICKNESS ON THE DAMPING IN ROLL
OF ATRFOILS AT SUPERSONIC SFPEEDS

ABSTRACT

The effect of thickness on the 'damping in roll of airféils at
supersonic speeds is investigated. The C,L' and the lifting pressure
distribution for several simple airfoils are found by the use of a second
order theory similar to the second order theory introduced by Busemann
and extended by Van Dyke. .

The airfells considered consist of infinite wings with arbitrary
symmetrical cross sections both swept and unswept, amd of a reversed
delta wing whichlms a parabolic cross section.

The flows considered are three-dimensional flows, and the methods
employed are somewhat different from those used by Van Dyke. The possi=-
bility of using the methods employed in the present paper for other flow
problems is discussed briefly.



SYMBOLS
aspect ratio
local velocity of sound
airfoil span
velocity of souﬁd. in free stream

velocity of sound in air which has been brought to rest adiae
batically

pressure coefficient (E.P,EEE':".W?,

1/2 pvz'

damping in roll lim ( rolling mo;aent. )
1/2 szPpWSb

pi-0

airfoil chord

arbitrary function associated with the equation of the airfoil
surface (see equation (59))

k3 congtants
arbitrarj function of time
a distance gmall compared to unity
Mach number )
slope of leading edge (cot A.)
(x #1) M

2p%
mipa‘vl + jv2 + kv5
pressure
rate of roll

velocity vector



Rw // (x-g)z - # (y-r( 2 - (2-5)2'

polar coordinates

area of airfoil

equation of airfeoil surface
time

free stream velocity
rectangular coordinates

= ) ﬁgmgul

B =

/)

Fl,‘ r 2, r 3, M aaxiliary functions used in finding the second

E.7,8

i -3

order potential functions
adiabatic exponent
parameter small compared to unity
rectangular coordinaﬁes

auxiliary functions used in finding the second order
potential function

leading edge sweep back angle

minus the slope of the center line of a reversed delta
wing ’

direction cosines of outward normal to element of area da
density

<

of
5

second order perturbation potential function
first order perturbation potential

second order corresction potential
scalar potential function
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INTRODUCTION
The damping in roll coefficient, C’L » provided by fins and wings

P
is important in the design of certain types of finned missiles and in
gtability studies of aireraft. Fortunately for many cases the effects
of misaile bodies and aircraft fuselages on the C, can be neglected.

Tp

In these cases the C, canbe found from a study of the isolated air-
P
foils, The use of the linearized theory of supersonic flow has permitted
an evaluation of the C?; for a number of different types of wings and
P ’

fins (for example see references 1 through 6). Expressions for the Cl"

P
found by the linearized theory depend upon the Mach number and the plan=-
forn geometry and are independent of the thickness distribution. Tests
conducted in the free flight Aerodynamic Range -of the Ballistic Research
Laboratories at Aberdeen Proving Ground (reference 8) indicate, however,
that for certain rectangular fins the thickness distribution has an
appreciable ei‘fec‘b on the Gl . ‘I‘hu.s, it appears that a study of the

second order flow around roll:.ng a:.rfoils might yleld some useful infor-
mation.,

The present paper presents the G.E for several simple airfoils cal=-

o) .
culated on the basis of a second order theory similar to the one intro=
duced by Busemann (reference 9) and extended by Van Dyke (references

10 and 11), The airfoils considered herein consist of infinite wings
with arbitrary symmetr:.cal cross sections both swept and unswept, and of
a reversed delta wing which has a parabolic cross section. It 1is the
authord! opinion that from the study of these relatively simple airfoils
the effect of thickness on many other airfoils can be estimated,

The analysis.contained in the present paper utilizes the same type
of iteration as that used by Van Dyke in reference (10 and 11). There
are, however, two distinct differences between the analyses of Van
Dyke?s and the present paper, Firstly, the partial differential equa- -
tions differ; secondly, the methods of determining the second order
solution are not the same.

ANALYSTS

Introduction:

. Recent work by Milton D. Van Dyke (references 10 and 11) indicates
that second order solutions of the partial differential equation of ~
gteady supersonic flow can be obtained by the use of iterative methodsa



The partial differential equation considered here is not the equation of
steady supersonic flow. It is quite similar, however, and we shall assume
that the secénd order scolution can be obtained by iterative methods,

Tt will also be assumed that the characteristics are the sams for the
firgt and second order solutions (this assumption was made in references 10
and 11), For steady plane flow the second order solution (reference 10)
found by using an iterative method based on the preceding assumption” ;yields
the correct second order pressure of the Busemann second order theory.
Unfortunately, no such justification of the preceding assumption is known to
the authors for three dimensional flows,

The iterative method used in references 10 and 11 requires a parti-
cular integral of the nonhomogeneous second order partial differential
equation in terms of the first order solution, The particular integrals
utilized in the present paper apply only to the particular problem under
consideration. The method developed here has the adwvantage that it can’
be applied to problems in three dimensional flow where a particular inte-
gral of the nonhomogeneous second order equation in terms of the first
ordor solution is not available in the literature.

The Partial Differential Equations

The partial differential equation for the potential function to be
used is a special case of the three dimensional time dependent equation
for the potential function of a non-viscous compressible fluid. For
completeness this equation will be determined from the equations of

hydrodynarics.
Four of the equations needed are contained in the equation cf con-
timiitys -
Va eq + %% =0 L)
and in the three Buler eguations:

"’VP""Z'VQ "‘gg'o (2)

where q is the velocity vector and p is the density.

* EBquations (1) and (2) give four relations between the five varisbles
P;p and the three components of 4, A f£ifth relation is obtained from the
assumption of zero heat transfer (constant emtropy). In the case of a
perfect gas this relation is

P=kp¥ ' (3)




where k 1s a constant and 4+ is the adiabatic exponent.

| It will be assumed that the velocity can be expressed as the gradient
of a potential funetiong )

q= v | | (L)
quuation (2) may therefore be written as

Lopp sl q2+-g€v_ﬂ,-0-

P 2
The preceding equation can be integrated to yield

.1 2 &

where K(4) is an arbitrary function of time. The function K(t) is a
constant (to be dencted by X) for problems which will be considéred here
since the flow upstream of the airfoils is independent of time.

The result of evaluating the integral in the preceding equation by
the use of equation (3) is

1 o2 el '
LN, +5 e LE o T ek (s)
(v-1)
The first partial derivative of equation (5) with respect to time can be
expressed as (with the aid of equation (3) )
1 2 1 oP

Atz W F w0 (6)
Equation (1) can be expressed'a_s o
w7 e q+%(qev_p_+§§):? o I ¢

Denoting %, the square of the velocity of sound, by a2 it follows that

equation (7) can be written as

- -

vhas-p (@Ly TRes -0 (8)

Eliminating P and p from equation (8) by the use of equations (2) and
(6) yields

. 2 - - ‘
azv;qa_(;;tt+q,v32- "'%E q2 (9)




Bquation (9) can be written in terms of the derivatives of the potential
function and ad as

vl - -ﬁ-tt*%'vaﬁ- e 7 (PR« 7A) +£—(v.n..§-.&)

(10)

Equation (10) is the three dimensional time dependent partial differential

equation for the potential function provided a2 is expressed in terms of
the derivatives of the potential function.

By definition

By equation (3) : .

Substituting this relation into equation (5) and solving for a2 yields

acl- ¥ (22402 wnfv2ny 0D

The function a is the local velocity of sound and the constant C, is

the velocity of sound in the gas which has been brought to rest adia-
batically. It is convenient to express a® in terms of ¢, the velocity
of sound in the undisturbed stream zhead of the-airfoil. It follows
from equation (11) that ¢ is '

ogH v

The result of eliminating 002 from the preceding equation and equation (11)

a? = c? -I"l (2 2+02 +02 +20,-7) (12)

A perturbation potential will be used which is defined by
N =7 (x+3)

Note that the perturbation potential has been normalized through division
by the free stream velocity.



, TIntroducing the perturbation potential into equations (10)and (11)
yields .

LY B TR PRA SR JE L M

o

2 .
y

Vzé @W»fvzé:ém-rzvz (1+éx)éy§n.+

(13) N

272@3, éz. §ﬂ+zv2(1+ éx)'@z@xz +2‘V(1-¥§—x) éxt-l-

2Cv§ ¢ +vd B _
y ¥yt z gzt

and
. 2 2
SOk IET IRT BT - I JOge

x x 4 z

Equations (13) and (1L) can be combined to yield

;.2 : . 2y . . £
P én+‘§yy ész Téxb ;z@'bt " -t(-r-l) éxf

c

1 x-° B + 26 +2¢9 & "+ & =
T &tj @xx é?‘.’f ‘I’zz) é:: é::s:x @y éw : éz X%
(15)

2, o .2 2 1) /2 22 2y,
+ & & S +ed & + (. + @ (
'V'éxéxt V.?y gyt V-Q?zl‘vzt _.(IE_L\x éy z)§n+

2
& +5 Vv+*d & + 8 & +& D 2% & D +
2 2% x 'y x¥



-

It will be assumed that for the airfoils considered here the triple
products in equation (15) can be neglected, Based on this assumption

equation (15) reduces to

2 , +é;2v S -'-}12{-..1(-
Peat @ ”z?@xt?”tt~w-)é;

T oxx ¥y z

$2 (6 _+5 +p yr2é & +28 9 o+ (26)
P‘! i

2 . = 1 . 1 1
- o + Cp + = ¢ * '('T‘)‘Z - - i -
P xixé pipt T 4 ! r awe :2‘ T xrs c:E = pap
{ 1 A 1 -
w (y=1) & +8& L& + 5 tE & v —yd +
. ( X L bt .,f‘; i/ @ xixt ripr T Tpr (p1) §161
" (1)
-
26 & 23 & +28 & +& 2 4
x8 xix? (rl) aQt x+'Qs rt  xirt xt T xtg
2 " - 2 . .
ey I P * &
v{r?) ar  “osge v e ri r't'}

The coordinate axes of equation (17) are fixed in space., It is more
convenient, however, to choose a new set of axes fixed to and rolling with
the body, the x~axis coinciding with the axis of roll. The relations between
the components of the twe sets of axes are: .

b 4
rort
Omb? - ptt
t=tt

. 11 .



In the new coordinates equation (17) becomes

2 . 1 ... 1 . v .. 2V N R
=" & + += &+ - - + - *
SREILLIURE JENES VRS SIS &

2 N _' ‘ - : .
Té(? 25@ éxrégéxéxeﬁzé&

2 2 - :
: + ey B + e D }
v r 0 x xt W e é§a'l:. v r é::-'i:. J

The flow over bodies rolling with constant velocities is independent of

time; thus, for the cases to be considered here.-the time derivatives arsd

gero in the preceding equation. Terms such as
"’P’g' & , =% & & » etc are of the third order and can
¢t oo r x T x9

be neglected. Tt follows from the preceding equation that the partial
differential equation (correct to the second order) for the flow over
bodies with constant rates of roll is given (in rectangular coordinates)

by L .

P 5 es e g ==MRGE -2 F )
XX Yy @iz ¢ X% xy
W ,;{-(T.,]_)('é (c@ +d§"'¢»-§'; YVo+2 & & o+
L x N X 2z / x xx

vy
28 & r2 & b :}
Yy ¥ z X%
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Equation (18) will be used in the following analysis of rolling airfoilsj

/

Pressux_-e Relationg B

The pressure coefficient to be used is a special cise of the pressure
coefficient for a three dimensional time dependent flow.

The pressure coefficient will be dei'ined by

R TR N

The square of the local velocity of sound is

2 _4dp
a -as |
From this and equation (3) it follows that
, ¥ ¥
A az-%-'rka-l-k. v P .
and - ' (20)
2
znk p'f'l.ﬂ'_
<2 ¥

In the undisturbed streanm

Too.gl
Pa ¥

The pressure coefficient can now be written as

2 P 4
C_ = f& =11 (21)
P i F Y/
From equations (20) the pressure can be written as
2 ,
P a/ a \3 %I
Ly,
In the undisturbed stream L
o =f. & ?':-CI PROPERTY OF T.Se amiTe
WE)T T
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From the two preceding relations.

% )

Substituting this expression into equation (21) yields
. 3 !

cp'ﬁkg) m 'E]'

Substituting equation (L4) into the preceding equations gives

c;-‘r—;zglai';lﬁ(zg +§ +§ +§ v@] }
| (22)

Equation (22) is the pressure coefficient for a three dimensional unsteady
flow.

Expanding equation (22) about the free stream conditions yields

“ o bty 22 2% 2 22 o 8.8 o’ 3,
--2 = ; = 2o _u-;'—j s e
, ('-:r?x * ) %3? 'E@z vE2 e +_vr-,_-_ er
(23)

In rolling coordinates equation (23) becomes .

" Gty =2 2 2 g2
c_ = =2{& +_§E§ ..E% * - - B e & + (24
P s ox ¥ éz ) ‘?y ﬁ X )

a2 ¥ g2
A “x C§‘l'. ;2' é "o

For the flow associated with steady rolling equation (2h) becomes (correct
to the second order)

. ' 2 2 2. 2 '
.5 -2{¢ +BE & -BL3 ) -8 -& 48& (25)
P *n.g?x_ Ev 'y B% Z e y = ﬁ ‘?x

Equation (25) will be used in the following analysis of rolling airfoils.




Method o_f Tterations

-

It will be assumed that equation (18) can be solved by an iteration
procedure. The first step is to find the first order solution, The first
order partial differential edquation is cbtained by neglecting the second
order terms in equation (18),., Thus the first order differential equation
is

B g s g+ g =0 ‘ (26)
xx vy 22

The first order solution is taken as the first approximation to the
solution of equation (18), It is assumed that the second approximation
can be found by substituting the first order solution into the right side
of equation (18) and solvirg the resulting nonhomogeneous equation, which
from equations (18) and (26) is

ﬁaﬁ’xx* ‘vy +‘rz.z -c% "'s,y sz 89':?)*

L (27)
20 EfN-l) B2¢x bt Py * 9, ¢:xz]

whare

x = =1)

By

The solution of equation (27) will be referred to as the second order
solution.

The particular integrals utilized in solving equation (27) will enly
apply to the problem under consideration, A different particular integral
is required for each problem.

Boundary Conditionst

Physical considerations require that the flow be tangent to the
surface, and that all welocity perturbations vanish upstream of the
airfoil, These boundary conditions may be expressed mathematically as:

¢ (x,¥;2) = O upstream of the airfoil,
and
ot q - 1% g = () -
where s(x,y,2) = 0 is the equation of the surface of the body,

kLY



The equation of the surface of the ‘body may also be expressed as

o 5= EFf (x,5) _ _
where € is small compared with unity and f£(x,y); thus,

..fﬂs - --ie%.—jé% + k
Since the velocity,q, can be written as .

q = i(V+V¢ +vw)+3(v¢ * ¥y + pz) + k (V§, +sz-hpy)
it follows that boundary' condition on the body surface is given by

-(V+V¢;+v¢;) o;:- (V¢§_+-Vy;+pz) ay&'v;ﬁ'z;-vk-bpyuo

. -

wherec'ﬁEa-i andcsfﬁ °

The coordinate axes will be chosen so that the airfoil under consider-
ation lies approximately in the z = O plane, The boundary conditions for
the first order solution are given by

¢ (x,y, ) = 0 upstream of the airfoil,

""E%"“’x (28)

| Z=0

Similarly the boundary corditions for the second order solutimm are given
by A

Y= 0 upstream of the airfoil

)/'z I =ty I * % gy I - €f(x',y)‘¢zz ’ (29;)

Zmo zZ=0 2=0 ‘gm0

Unfortunately for the airfoils considered in this paper the first
order velocity components are discontinuous across the Mach sheet from
theé leading edge. The effect of these discontimuities on the second
order solution must be evalnated.



Leading Edge

/-Moch Sheet 1 x=pz= Xep 24 ¢
: ' ze 2,

ol )

a Leading Edge Moch Sheet b Leading Edge Moch Sheet
With Zero Thickness with Agssum'ed Thickness

h"

B ELT } —X

¢ Discontinuity In 9, Across d Plot Of §,Across Leading
Leading Edge Mach Sheet Edge Mach Sheet With
Along The Line z=2, Assumed Thickness Along

The Line ze2z2,

FIG. 1. An illustration of removing the discontinuity in d’x across the leading edge Mach sheet
by assuming the Mach sheet {0 have thickness,

17




In order to evaluate the effect of the discontinuities in the first
order velocity components we shall assume that the ieading edge Mach
sheet has a small but finite thickness, within which the first order
velocity components will be made continucus, Thus, the discontimuities
through the Mach sheet are replaced by contimuous functions. This process
is illustrated in figure 1 for the velocity compoment in the free stream
direction for an airfoil with leading edge perpendicular to the free stream.
The effect of the discontinmuities on the second order solution will be
found by obtaining the second order solubtiom within the Mach sheet and
‘then letting the thickness approach zero.t :

The procedure outlined in the preceding paragraph will be illustra-~
ted by considering the case of an infinite rolling rectangular airfoll
having a constant initial slope, € , along its lcadlng edge. Only the
Mach sheet above the airfoil will be considered since the Mach sheetis e
above and below are of the same form. The discontinmuities through the
leading edge Mach sheet depend only on the initial slope of the ai.rfo:l_'l.,
therefore the discontimuities in the first order velocity components
through the Mach sheet above the airfoil will be the same as those through
the Mach sheet above a flat rolling airfoil having a constant gslope € .

The first order potential function associated with the flow over the
upper surface of an infinite rolling rectangular wing with a constant
slope € ~is given by .

=& -€) (x-pa . (30)
_ where the airfoil lies approximately in the me0 planess,

. The discontimuities in the first order velocity components through
the leading edge Mach sheet above the airfoil are from equation (30)

%(%‘-e)
INEY
A¢z=($ + £ )

It will be assumed that the Mach sheet has a small thickness (see
Pigure 1=b), The velocity components within the sheet will be defined as

@

¥ An alternate approach would be to attach a small surface to the leading
edge of the airfoll which would cause the first order velocity components

to be continuous, The effect of the discontinuities would then be evaluated
bty a limiting process in Whlch the width of the small attached surface

would approach zero.

st Equation (30) can be found by the integration eof a source distribution;
(see refesrences 7 and 12) howsver, for simple problems such as this a
heuristic method generally yields the result with a minimum of effort.

18-




| ﬁx-/g -E‘s}(ﬂ-ﬁﬁ-\.

(s
g, =0 (&0

ARC A

where [ is the thickness of the Mach sheet in the x direction. Note that
within the Mach sheet

-2 ¢ s d "+¢m.o

and that the veloeity components are continuous functions in the neigh=~
borhood of it,

From equations (27) and (31) the differential equation within the
Mach sheet is found to be

Pt gt Vi (F (B -2)

™ -ei? - :
Jf‘ (gi €) ? (x-Bz).f (32)

Tt is well known (references 7 and 13) that the solution of the non-
homogeneous equation

"'52 Vx,c > VW * ﬁz = F(J‘;:Y.:Z)

is given by
olaf ) |
V(x,ysz)ngf?f[f_ F_‘L_,.f_,_{_)_ dg drf ds +
’ v
£
4 , ,
5 j (g V9-975) 5, da (2

19



where

2 2 2 2
e Yomg? 2w oq? B (g
'ﬁ'h = ..:i_p2 vy + 3 v, * k\t.3 (vl,'v_'z,vB are the direction
cosines of the outward normal to the element of area da, s is an arbitrary

surface which cuts the forward Mach cone from the point (x,y,2), Vv is the
volume inclosed in the forward Mach cone from the point (x,y,2) and the

f
surface s, and the symbol f f denotes the finite part of an integral as

defined by Hadamard in reference (12),)

The result of applying equation (33) to equation (32) is

W%m--z%fff% %*2-{9‘1 GR7e) o

(3h)

.. -- '2
‘..-‘.{N(G'q[ E):l(g -8%) - dg an 43+

£
3= ” F 99-098) « & da
3

where the volume, v, is the volume of the Mach sheet within the forward
Mach cone of the point (x,y,2)}. The surface s will be chosen so that it

is made up of the z=0 plane and an arbitrary surface upstream of the Mach
sheet,

The integral over the surface upstream of the forward Mach sheet is
gero so that the surface integral in equation (3li) can be reduced to

£ hia
: [7,(8 s, 0O
b [ Gov-wp om an-g [[ [EERLD
s 8
1

b,

cI(E.m, 0 P a5 ay

20



The area 8y is the area of the z=o plane which is within the Mach sheet.

and the forward Mach cone from the point (x,y,2). From reference T page
2 2 the preceding intsgral can be e:;prqssgd as

f
b [ Gve-erpnm we-l JfRGL20 o o
s 8 .

It follows from this expression that equation (3l) can be expressed as

W"’Y'“)“-yff( (32 (%'?-E) +

2
& -£) (33)

8

(5“-13’5;)} dg, dap 4a¢

(-9

[ e ey
51

In order to evaluate the gsecond order solution on the down stream
side of the Mach sheet the point (x,¥,2) will be located at an arbitrary
point on the surfade x = 'f'he thickness of the Mach sheet was
chosen to be small., It follows that for given valuesof E and § the
variations in the integrand of the volume_and surface integrals are made™
up almost completely of the variation of L 5 This allows the substitution

R
of y =® in the integrands except in R. Equation (35) can now be reduced
to ¥
% Bg +f
L f
vesthno--% [ [ /g &-¢ -
o B g s



,,\/(x-g)z + p(a-%)?

B
F - ) 3
+-—F (&8 5@1@& 2 +
J §
y k) +B(z-%f_

P

, oy v+ @./(x-.- ﬁf + ﬁ2 (z= ﬂz
(2-¢) r e
T | 5as =
o V=52 s 2 02
B

+

e}

Integrating with respect to ?:? in preceding expression gives

z gS+f
ﬁf(ﬁz'*(s?'sz)’“% -j d‘;f {g(gz-e‘)*'
o Bg‘
g-o' . .. [ gee
L\ P A . LV "€
I AL e TR

Performing the remaining integrations yields

’}V(!'Bz+f‘,'5;,z)=—fp;vez Lg'é) z;-
i’i&vzn(gt e)] ¥ - 4

28 28
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Taking the limit as § approaches zero and replacing z by -B- gives

AV/‘ o M2 (N+2)E§-z-x+ _(TLLM *

7x=ﬁz’-

- ey
— (36)
2B _ o
Baquation (36) is the value of the discontimuity of the Second order’
potential function associated with the flow over the upper surface of a -

rolling airfoil which has a leading edge with a constant initial slope .and
. zero Sweepback,

Similarly the discontinmity of the second order potential fumction

asgociated with the flow over the upper surface of a rolling airfoll which
has a sweptback leading edge with a constant initial slope is found to be

ayl-5 (2 (B ) (3 m) -

«* 3aV2
M=y -a2z=0
2
+ gve (LZ_ZMZN +1 (206"’5) -Mn€ ?n e’ z (371
o c :

where
Q= \/ﬂzmz =1

The Infinite Rectangular Wing with an Arbitrary Cross Section:

In this section the second order potential function assoclated with
an infinite rect.angular wing of arbltra.ry cross section will be determined.
The coordinate axes are chosen 80 that the y-axis coincides with the lead-
ing edge (see Figure 2). The flow over the upper and lower surfaces
are similar; therefore, only the flow over the upper surface will be =~ =~
considered in detail. The equation of the upper surfacs will be represented

by

z= &F (x) 538)

where € is small compared to unity and £ (x) is of the order of unity, »

-
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FIG, 2. 'Cmrdinate axes used in the analysis of an infinite rectangular wing.
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The first ordér solution is

¢ % (%=~ Bz) - E-S—-E-_ (.:35")

It follows from equation (39) and equation (27) that the second order
potential functions must satisfy the nonhomogeneous equation

;szx#"}é;y;"byzznzmz [éﬁz- é_,’_g (W+1) £r7+

5 :] &0)
+ €SN £ o

where the primes deno’ce derivativeso
The potential function }lowlll be divided into two parts 6-1 and 02

such that
[ 2
2 & ' 1
B (0y) gy + 01) + (01),, = 2 mléz"—pz - S (W) £ s
+ 52 N £t £ (a)
and (41)
"B (62) + (82) * (92)23 i | (b)

By inspection a solution of the nonhomogeneous equation (hl-a) is found to
be .

gq = Me-ﬁ—%——2 x +EpT M (M) o (1 z £1 _5______2M2H | z (£1)? :
LT B 2P (L2)

The boundary conditions require that: (from equation 36)

¥| - 25 fé—'_,—f‘*?g&ﬁ- . )

x=fz x=Bz

1\12(514'1 DYX é 21\12&
vp% 282

es



and (from equation (29)})

’?l(’{ 391; +392 g-=-%$fi-§3£ﬁ+

2m0 Z=0 220 P
(0
+ pez £ o
From equations (h?)., (hB); and (hl)
W (Nl "
e = - ,-IS
x=Bz 2%75 2)
and .
2 ,
R2| w-RET P’y 0 ve? prem o E0OND) (412 (46)
: Z=20 Ve 2p :

The function 6, will be expressed as the sum of four functions I

. . 1’
™
Tp, 13, and l"h, such that

"Bz( Fi)xx + (ﬁi)yy + ( Pi)z =0 i= 152’3,’)4

M| o e S ) o

x=pz Z=0

a3 £ 20Pn-2)
erE'BZ. > 53 Z=0 ) 2# 2 (f')z
P l)pix . al)
M _S_z_ﬁzL, 2 L;.o



By inspec?ion
?1 - 222@; (1-12 N + pz)f (x-Bz)
Vg
. x-fz o
My = -2 j £(E) £ (&) 4§
. o ' .

x=-£2

__g_g."ﬁ). J f!(é) Aa‘

The function ‘Fh was found by assuming a solutlon of the form

th_w.-pxlg-rxz [(;:+éz)3 +

2%
(x-sz)3]
where Kl and K2 are undet.emined constants., This leads directly to the
reswl.t
TR ERT-2
| -zi? [(x-hBés)B * (x-ﬁz)ﬂ}
Hence

0, = f-fl P. Hg_ (p? 1) £(x-ps) + o
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x=-Pz " x-Ba

?é"'J £(z) £ (g)dg;fﬂﬁ‘:z). j [f'(ﬁ)} dg +

0 2p
. (u7)
o (el 2{. 2 £ .1 { 3 3]
+_£?.€3.L M~ Ay (x+pz)> + (x-Pz)

Since the second order potential function is expressed by

é 9‘4-1’1: ¢+e +82

the ?zcc))l‘)ld order potential function is given by (from equations (39), (h2) R
ard 7))

§ = % (x-ﬂﬁ'a)"-—g-pﬁ—éf .x"- 2) . . fﬁz 2 x +

€ py W (N+1)z _ ‘_'e‘zmzliz E, _ 2 .
+ & - £1(x-pz) a5 f1x Bz)} +  (h8)

+%€- (M2N+32) f (x-Bz) - Gaf(x"ﬁz) f ' (x-pz) +

- g o] e

%’NI’L

’ ‘ .
Eg%’:- (N+hy) { -'.\"zx
2B :

+ Eﬁ}" [(x-i—Bz)s + (x-pz) ] }
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From equations (25) and (48) the pressure coefficient on the upper
surface of the airfoil is given by

oot o S ]

2

P-g, wh) (P i-‘-g-

B

)

For airfoils of symmeirical thickness distribubtion at zero angle
of atback the pressure coefficient on the lower surface of the airfoil
is the same as that on the upper surface with p replaced bty =p, The
pressure differsence coefficient can. therefore be expressed as ‘

Ac, =0, (p) = C, (-p)
It follows from the preceding relat:.on and equation (h9) that

pop - 10§ e 0] oo

Note that the second order seffBet in equation (50) is a function only of
the local slope of the surfacd, &' (x).

It should be noted that only terms multiplied by p and p € contribute
Yo the 1ifting pressure, This is true in general since the nonhomogeneous
equation used in finding the second order sclution is linear and each term.

on the ‘right side of the equation is multiplied by either p, € , pa, PeE
or € ¢, In the following analysis terms not zrmlt.lpl:.ed by p or pe will
therefore be neplected.

-

A Region of Flow Over a Reversed Delta Wings

The potential function associated with the région of flow which is"
not affected by the center section of a reversed delta wing will be found

for a wing c¢ross section given by
¢ x("d - "") 1)

The region of flow considered and the cross section are illustrated in
figure 3,
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a. Cross Hotched Region Indicates The b. Cross Section View In Plane a-g¢
Region Of Flow Not Affected By '
The Center Section

FIG. 3. The reversed delta wing with parabolic cross section.

30




The linear solution is
ﬁ-[«P@ - €a+3EL 4 e(x-sz)] i—pﬂl (52)

The boundary condltlon behind the Mach sheet fram the leading ed.ge
is not the same as that for the infinite wing treated in the previous™
section. It is, however, quite similar, and by the same type of analysis
as that used for the infinite wing the boundary condition behind the Mach
sheet from the léading edge is found to be (neglecting all terms not =~ ~
multiplied by p or pe as per the lasi paragraph of the preceding section).

’F—i?lu‘ (& = «) 53)

From equations (29) R (51) s and (52) the boundary condition for the
second order potential function in the-z=o plane is found to be -

xspz

: : 2 A 2 : ‘
Jd HE-F - wm-F (51)

The nonhomogeneous equation for the second order potential function
is {from equations (27) and (52))

-8 y;n v+ - o€ pe {(m) y +-;— -“ &}

z2 v B

The- Secohid order potential ftmctlon, )ﬁwill be divided into three

parts, €y, 92, and 03 such that

)Zf-‘ 0, + 6, + 0

2 2
2 2,2 -_?L.M‘[(Nﬂ) + 5]
" TR TR R
3917
91} = 0 3 Wa =) 9
x=Pz z=0



ox’ y’ Gl
o0
2 33
o 3 = 5 m= | " W% l s
x=Pz z=0 2=0
ard
~ 2

a2e aze ) 93
-ﬁz --—---2¢é -+ % 3 + e a 0

ox oy oz

93 E - ]lj,-, 3 ;;2 [ a0,

x=pz x=fz z=0

Tt is easy to verify that the functions 0., 8, and 8, are

3
_Mpe (m1) (2 - p%P)

8%y

]‘12 XZZ ) 23 | x-zs
e [d- op e

168

8, = y+ (Q)

1

.2 56‘[53 _{x-i- Ez) _{g}%&} }
8y = = E’E{% (x~Bz) + ?g‘-rz (1:--135)2 + -L-i;ﬂ-l-z ;;x- z)? + (56)

2 2
+;§%(;’§2—. n-g-g—— +2y2+§%\'; (x=Pz) (v)

/
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and _ i

I B R v

-12\8 -

The second order solution is
-..» = ‘“J{"'- »‘
& g+ ¢+el+32+83

or from equations (52) and (56) (neglecting terms not multiplied by p‘ or pe )

G G - EREONGE Y

B
Wps 2 . (xp2)>  (x-8z)° | ‘ £ “
N e + - ey (x-pz) +
A Bﬁg-)_--—‘ oo
+ BC y_(x-pz)z . ZPE(X-BZ)E + BE fEEE + (57)

- 3%’._ +2y° 4 % (x-8z) +

' 3 2
{x+Bz _ {x-pa _dyxz -

T 12 18

oI pel 3 /xiBziS  fxw z\?]
% BRIt S

From equations (25) ard {57) the pressure difference coefficient is given by

e e o

“ 2R,

29 "
.peafmy  _ pe2 i’ ] (58)
p Fwm
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The chord-wise lifting pressure is plotted in Figmure (L) for a
reversed delta wing with a 5 per cent thick centef section at a Mach =
mmber of 2 for two spanwise stations. The chordwise lifting pressure
variations presented in figure (L) are quité similar to those for ~-
infinite wings with the same cross sections.

The Infinite Sweptback Rectangular Wing With an Arbitrary Cross Sections

In this section the effect of sweepback will be investigated by con-
sidering the infinite sweptback rectangular wing with an arbitrary éross
section. The coordinate axes are chosen as indicated in figure (5).

The equation of the upper surface will be represented by

. \ .
e € f(:“l"ﬂ ) (59)
The first order solution is

¢”—B§ (mxeg=az) [-M+(232m2-1)y—a57 +
2Va L 4
(60}
a m
The second order potential function must satisfy the nonhemogeneous
equation (neglecting terms multiplied by p2 and € 2)

-ﬁ2%xx+yw+ yzznzmz gi:-(!j&;g& + 1) Yff""%—f”"‘

2 2 3
+ E_ﬂ_‘Bﬂ £1 4 EE.’“E_ x £t
a : a )
The function ¥ will be divided into two parts 8, and 32’; The
function 61 is taken to be a solution of the nonhomogeneous equation,

therefore 62 is a solution of the homogeneous equatione.

The function 91 was chosen to be
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FIG. 5. Coordinates for sweptback wing.
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: '";E{E(iu—*l) g e

h _ A
(..Ez_ +1)zf %— xsf'} (62)
- The boundary conditions require that

)”, u.... pry .% +1) (;2.‘;5-;3") ff(é’)'__,(‘)

MX=y-aze0
(63)

and

."z I V [ Mzm x-l-(Bm +23m-1)y]'f'-§ £ (b)

Fram equations (62) and (63) it follows that

2 2 :
, (-%EL + 1 22 £r (0) (a)
2 ‘2Va J _

m‘z-y-a.z=0 '

and - (64)
30 : :
e L hh ‘
R e I

o

-“%.2-(1'2;‘“— -1) xr:u-.s(_’!g_ + m +1) }

By mpection t.he function 6 was found to be

° .g_{ (322_+1) [(m—y)z-razs]f'(o) *

+-%(=ﬁ?hﬁ+3ﬁ+1-ﬁ¥—)[-§(%+y) f--’c-’:g ‘S—:%f—(:)dn]*r



([ e [T

e L mpel @

m 1‘{2Iﬂ72m,'t 2., n_ﬁt_-%_g_;z_. }

- -—-g-——- 1 £(u) & _

;E( - +m+) J- u) du '
0.

Fran equations (60) 5 (62), and (65) the second order potential funetion
is given by (terms multiplied by p2 and 6 have been neglected)

QH#(m-y-az) [-le"‘(?za "1)37"‘%]
a

g i [ (B ) 5o
2 h
-? 52 £ n%m— xzf'-l- %—— "'1) [(mx—y)2 +
, 2 N
* azzz] fi(O)w% (f—gg—mk -l) zf + (66)
6 22 ' 22
(MzN-m _%‘;4.1) ﬁ-ﬁfg,(ﬂﬂz’“_ -1)xf+
d a

a a”
.. 3 2 2 , IX-~y-az -
..mim (Nﬁg +1) f n g () du}
a 2a - P

From equation (66) the lifting pressure on the airfoil is given by
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b Rt el [1/wE )
2% | 18 = B )
| . (67)
o (mx=y) £1 (0) *(!pg_ -) y £+
a.
2 2 2 2
..(EEQJ’.. <1 mxf? = (ﬂ'ﬂé’“_ +1) fJ
a a

Figure (6) presents the variation of the chordwise lifting pressure on a
wedge with a L5° sweepback and with a 10 per cent thickness at a Mach
number of e

_ THE DAMPING IN ROLL o
The pressure coefficients found in the preceding sections can be used
to investigate the effect of thickness on the damping in roll of some air=

foilg, In the following sections some exact and approximate expressions
are presented for the damping in roll of several types of plan forms,

The Infinite Rectangular Wings

The damping in roll coefficiant, 01' s can be written as

¢, = lim i f y A ¢ dx dy (68)
7'p P =0 §v5b j P
| area |
For an infinite rectangular wing the C 1 " can be written as
p ~
L bl._‘, J’ j yacp' dx dy (69)
P p =0 . o '

b /2 °

Substituting equation (50) into equation (69) and performing the indicated
mathematical operations yields

z.p"BF[“ .2“_1‘1121] (70)
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FIG. 6. The chordwise variation of the lifting pressure -VAC /pd on a wedge with a 45° sweep-
back and a 10% thickness at Mach numbe
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Equation (70) indicates that the effect of thickness on the C,,' of an
p o

infinite rectangular airfoil with a symmetrical thickness distribution
varies directly as the thickness of the trailing edge. It can also be
shown that to the second order the CT. is independent of the angle of

p
attack of the airfoil.

From equation (50) the center of pressure on one panel (half-tring)

.is found to be _ d
e [
'i’ad-~/2+ﬁ < f(x) ax )
1+£ #n 2 |
(T)
F = b/3 ' )

whers X is measured from the airfoil's leading edge and 5"' is measured
from the airfoil's center line, For the infinite wedge the preceding
equations reduce to L :

x=4/2

¥F=1v/3

Figure (7) presents the variation of X/d with Mach number for various
values of the thickness parameter for an infinite wing with a parabolic
cross section.

The Reversed Deltd Wingi
An g proximate expressien for the damping in roll of the reversed
delta wing previously considered can be obtained by assuming the expression
for the pressure distribution in the region not affected by the center
section is valid over the complete wing. -
Under this assumption the (appréximate)c 1 '_ of the reversed delta

b
wing is given by (from equations {58) and (69)).

1 2E€d0PN + 2 |
CLP "'55"'—#—1-15 = ‘ (72)
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FIG. 7. The variation of the chordwise location of center of pressure, x/d, with Mach number
for various values of the thickness parameter for an infinite wing with a parabolic

cross-section,
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Figure (8) presents the variation of the ¢, with Mach number for

1
N p
0 and 5 per cent thick center sections for various aspect ratios. It can
be seen from Figure (8) that the effect of thickness is quite small in
this case. )

From equation (58) the center of pressure is located approximately
at the point

1_ 6ea(n+2) _ Mre a

X 2PIRZ_ 2y (a)
1 o 2ea w2
3 P
g (13)
1 _ €d (2N + 2)
Fe-pZ 1083 m (b)
1_2€a 0 N+ 2) .
-

Figures (9) and (10) present the variation of X/d and ¥/b respectively
with Mach number for various aspect ratios for reversed delta wings with
0 and 5 per cent thick center sections.

The Infinite sth wingg . e e et t

The damping in roll of an infinite swept wing with an arbitrary
symmetrical cross section can be cbtained by substituting equation (67)°
into equation {68) and performing the indicated mathematical operations.
The C for this type of airfoil is given by

lp
A 2 [1 . e szmeLdl] (74)
) ¢ -
P e 4 -

Equation ( Th) irﬂic_:ates that the effect of thickness on the C.L" of an

- o D
infinite swept wing with an arbitrary symmetrical thickness distribution
varies gl';rectly as the thickness of the trailing edgg.

. Figure (11) presents the variation of the C, = with Mach number for

tp

10 per cent infinite wedges for various sweepback angles.
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FIG. 10, The variation of the spanwise location of center of pressure, fr/b, with Mach number
for various aspect ratios for reversed delta wings of parabolic cross section with

zero and 5 per cent thick center sections,
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FIG. 11. The variation of the damping in roll coefficient, C gp , with Mach number for 10% thick
infinite wedges for various sweepback angles,
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The Swept Fins

Figure 6 indicates that spanwise loading on an infinite swept wing
is not symmetrical. An approximate expression for the C 1 of a swept
' p

fin ﬁ:.ll therefore be presented. It is assumed that pressure distri-
bution is the same ag that for an infinite swept wing and that the roll
axis is located as indicated in Figure 12,

The C,L' of a fin may be expressed as
P

6 aol [ (fupra AC. da ()
-
P o “y/m

Substituting equation (67) into equation (75) and performing the indicated
mathematical operations yields

. . bkm ¢ ox gon’ (fTE‘ n’

e [ [ wptud Yo 2M_25 wg%n? fTE)
F{-IF () wo 2R (2 )(R).
| d |
* L‘MimB (Nﬁzi“i + 1) f ﬂ-‘i‘l du}
0

ac 2a d
-Figure 13 presents the variations of the C with aspect ratio

for a 10 per cent thick wedge for various sweepback angles at Mach number

5. This figure indicates that for a fin with a wedge cross ssction the
difference between the C ?.' of the linearized theory and the C'L " of the
L ' P ' p
second order theory increases with sweepback angle.

Figure 1L presents the variations of the Gl with aspect ratio for

‘ P
a fin with a cross section at y = 0 (5 per cent thick) given by

g = x!d'-x!

104
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>~

FIG, 12. Coordinates used in finding the approximate damping in roll coefficient, Cl , for a fin,
P
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for various sweepback angles at Mach number /5. This figure indicates
that for a fin with a parabolic cross section there is little difference
between the values of the linear theory G'L ‘and those of the second order

P
theory C o

tp

'CONCLUDING REMARKS

Most of the airfoils considered in the preceding analysis are not
generally encountered in practice; however, many airfoils do have regions
with the same pressure distribution as airfoils considered here, It is,
theref are, possible to estimate fairly accurately the effedt of thickness
on the C_L of many airfoils not considered in the analysis. 4s an illus-

D .
tration consider the CL of a rectangular airfoil with a wedge cross
P
section such as the rectangular fins considered in reference 1lhi. Figure
8 of reference 1l presents the Cl " of rectangular firs with 8 per cent
p
thickness. An estimate of the effect of thickness can be made by increasing

the C"L of the linearized theory by the same percentage as the thickness

B
increases the C'L for an infinite wing. Figure 15 presents the values
‘ ‘ p .
of the C estimated in this manner as compared to the experimental .

T
P
values presented in reference 1, It can be seen from this figure that the
agreement hetween theory and experiment has been improved considerably.

The results of the present paper seem to indicate two general trendss
1, The effect of. thickness on the C.&

p

airfoils with zero thickness trailing edges .

is quite small for the

2, The effect of thickness on the Cl" increases slightly with
' ' i P

sweepback angle.

The airfoils considered in this paper have symmetrical thickness
distrivutions., But since the flows over the upper and lower surfaces
of the airfoils tréated herein are independent of each other, aerodynamic
properties of airfoils with similar planforms but with unsymmetrical ‘
thickness distributions can easily be determined from the results contained
here,
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The limitations of the Busemann secand order theory for two dimensional
flows have been investigated (see reference 15), Since the theory contained
in the present paper is closely associated with the Busemann second order
theory it séems likely that the results presented herein have similar
limitations,

The type of analysis used in the present paper is not restricted to
the study of airfoils with a constant rate of roll. An examination of the
partial differential equations and of the boundary conditions involved
indicates that the same type of analysis can be applied to airfoils -
at a constant angle of attack, airfoils with a constant rate of pitch,
and airfoils with simple unsteady motions,

JOHN C MARTIN
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(atand

5l




Lo

2.

3.
ko

56

6o

Qe

10.

REFERENCES

Harmon, S. M.: Stability Derivatives of Thin Reétangular Wings at
Supersonic Speeds, N.A.C.A. TN 1706, Nov. 1948,
Malvestuto, F. 8., Jr., Margolis, K., and Ribner, H. S.: Theoretical
Lift and Damping in Roll at Supsrsonic Speeds of Thin Sweptback
Wings with Streamwise Tips, Subsonic Leading Edges, and Supersonic
Trailing Edges. NACA Rep. 970, 1950.

Piland, Robert O,: Summary of the Theoretical Lift, Damping-in=Roll,
and Center-of-Pressure Characteristics of Various Wing Plan Forms at
Supersonic Speeds. NACA TN 1977, 19L9.

Bleviss, Zegrmund J.: Some Roll Characteristies of Cruciform Delta
Wings at Supersonic Speeds. Préprint of paper pressnted at Annual
Summer Meeting, Inst. Aero. Sci. (Los Angeles), July 12, 1950,

Ribper, Herbert S.,: Damping in Roll of Cruciform and Some Related
Delta Wings at Supersonic Speeds. NACA TN 2285, 1951.

Barmon, S, M., and Jeffreys, J.: Theoretical Lift and Damping in
Roll of Thin Wings with Arbitrary Sweep and Taper at Supersonic
Speeds. Supersonic Leading and Trailing Edges. NACA TN 2114, 1950.

Martin, John C.: A Vector Study of Linearized Supersonic Flow-Appli<
cations to Nonplanar Problems. NACA TN 2841, 1952.

Bolz, R. E. and Nicolaides, J. D.:¢ A Method of Determining Some
Aerodynamic Cosfficients from Supersoni¢ Free=Flight Tests of 4
Rolliézng"Missile, Jour, Aero. Sci., Vol., 17, No. 10, Oct. 1950, pp.
609 10 ’ !

Busemann, A.: Aerodynamischer Auftrieb bei Tberschallgeschwendigkeit.
Atti die comvegni 5 R. Accad. diTtalia, 1936, pp. 3282360, (also '
printed in Luftfahrtforschung Bd. 12, Nr. 6, Oct. 3; 1935, pp. 210=229;
available in translation as British Air Ministry Translation No. 28kl.)

Van Dyke, M, D.: A Study of Second~Order Supersonic-Flow Theory. NACA

_ TN 2200, 1951,

11,

12.

Van Dyke, M, D.: First and Second=Order Theory of Supersonic Flow
Past Bodies of Revolution. Jour, Aero. Sci., Vol. 18, No. 3, March
1951 pp. 161-179, ' -

Pu ¢kétt, Allen E.: OSupersonic Wave Drag of Thin Airfoils. Jour. .
Aero. Sci., Vol, 13, No. 9, Sept. 1946, pp. LT75=h8L, :

55




Hadamard, Jacques; Lectures on Cauchy's Problem in Linear Partial
Differential Equations. TYale Univ. Press (New Haven), 1923.

Nicolaides, J. D, and Bolz, R. E.: On the Pure Rolling Motion of
Winged/or Fimmed Missiles in Varying Supersonic Flight. Ballistic
Research Laboratories (Aberdeen Proving Ground, Md.) Report 799,

Hilton, W, F.: " High=Speed Aerodynamics. Longmans; Gireen and Co,
(New York) 1951, pp. 237-2L40,

56




]

DISTRIBUTION LIST

Ho. of No. of

Copies Organization Copies Organization
L Chief of Ordnance ' 5 Director
Department of the Army Armed Services Technical Infor-
Washington 25, D. C. mation Agency
Attn: ORDTB = Bal Sec Documents Service Center
R Knott Building
10 British = ORDTB for distribution Dayton 2, Ohic

Attn: DSC=SA
L  Canadian Joint Staff - ORDTB i ' o
) for distribution 1),  GM/ML No. 1 - Parts A, C,
' - DA

h Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D, C.
Attn: Re3

1 Commander
Naval Proving Ground
Dahlgren, Virginia

2 Chief of Naval Research
Technical Information Division
Library of Congress’
Washington 25, D, C.

2 Cormmander
Naval Ordnance Laboratory
Wnite Oak "
Silver Spring 19, Maryland

1 Commander
Naval Ordnance Test Station
Inyokern )
P, O, China Lake, California
Attn: Technical Library &
Editorial Section

1 Superintendent
Naval Postgraduate School
Monterey, California

1 Director

Air University Library
Maxwell Air Force Base, Alabama

57




